
1 1D Quantum Walk

1.1 Basic Dynamics

The state of the single particle quantum walk, here named quantum walk in 1D,
is written as

|ψ〉 =
∑
i,c

αi,c |i〉 |c〉 . (1)

where |i〉 ∈ HP , |c〉 ∈ HC and HP = span{|x〉 : x ∈ Z} and HC =
span{|R〉 , |L〉} are Hilbert spaces. The overall Hilbert space is denoted H =
HP ⊗HC .

The dynamics of the walk is described by the shift operator

Ŝ =

(∑
i

|i+ 1〉 〈i|

)
⊗ |R〉 〈R|+

(∑
i

|i− 1〉 〈i|

)
⊗ |L〉 〈L| (2)

and the coin operator, which is a 2 by 2 unitary matrix, denoted here as Ĉ.
The usual description of the unitary dynamics of quantum walk is given by

Û1 = Ŝ ⊗ Ĉ = Ŝ

(∑
i

|i〉 〈i| ⊗ Ĉ

)
.

1.1.1 Shift Operator and Topologies

The shift operator can also be altered if one defines the boundary condition to
be at positions −N and N (which is the case for every simulation):

Ŝ1 =

(
N−1∑
i=−N

|i+ 1〉 〈i|

)
⊗ |R〉 〈R|+

(
N∑

i=−N+1

|i− 1〉 〈i|

)
⊗ |L〉 〈L| . (3)

On the other hand, it is possible do define circular topology simply by con-
necting both ends of the line, only by adding to Ŝ1 the following terms

B̂1 = |−N〉 〈N | ⊗ |R〉 〈R|+ |N〉 〈−N | ⊗ |L〉 〈L| (4)

Another constrain that can be imposed on the shift operator are broken
links. When there is a broken link from positions i0 to i0 + 1, we get

Ĝi0 =− (|i0 + 1〉 〈i0| ⊗ |R〉 〈R|+ |i0〉 〈i0 + 1| ⊗ |L〉 〈L|)
+ |i0〉 〈i0| |L〉 〈R|+ |i0 + 1〉 〈i0 + 1| |R〉 〈L| .
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If we have broken links between nodes (i10, i
1
0 +1), . . . , (ik0 , i

k
0 +1), and define

I0 = {i10, i20, . . . , ik0}, the resulting Operator will be

ĜI0 =
∑
i0∈I0

Ĝi0 .

When broken links are fixed from the beginning and are unchanged during
the walk, we are dealing with static broken links. Here, I0 is fixed right at the
beginning and remains unchanged throughout the quantum walk.

Given a specific shift operator, If broken links appear at random positions,
then one is dealing with dynamic broken links. At each step, on top of the
shift operator, random broken links are chosen according to a fixed parameter
p which gives the probability of breaking any link. At each step, for each
i ∈ {−N, . . . , N − 1} a number r is picked at random from [0, 1]. For each i,
if r ≤ p, then i ∈ I0, otherwise i 6∈ It,p0 . Then, ĜIt,p0

will will change the shift
operator in step t.

Since the shift operator can vary at each step t, we denote it by Ŝt to ease
the notation.

1.1.2 Coin Operators

A generalization of this unitary evolution can be done by assigning to each
position i a coin operator Ĉi:

Û2 = Ŝ

(∑
i

|i〉 〈i| ⊗ Ĉi

)
where the coin operators can be written more generally as

[
eıξ cos(θ) eıζ sin(θ)
eıζ sin(θ) −eıξ cos(θ)

]
with ξ, θ, ζ ∈ [0, π/2].
static random coins occur when at fixed positions, at each step the coins

are randomly chosen. A random coin can be defined by choosing ranges [ξ0, ξ1],
[θ0, θ1] and [ζ0, ζ1] and

Ĉt =

[
eıξ cos(θ) eıζ sin(θ)
eıζ sin(θ) −eıξ cos(θ)

]
ξ = ξ0 + (ξ1 − ξ0)× r1

θ = θ0 + (θ1 − θ0)× r2

ζ = ζ0 + (ζ1 − ζ0)× r3

r1, r2, r3 ∈ U(0, 1).
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where the subscript t means the coin is altered at each step.
Additionally, one can define for specific position k a random coin as Ĉt which

we denote here as Ĉk,t and the set of such positions, K.
The general dynamic will be given by

Û2 = Ŝt

∑
i 6∈K

|i〉 〈i| ⊗ Ĉt +
∑
i∈K
|i〉 〈i| ⊗ Ĉi,t


In the dynamic case random coins appears at random positions at each step.

First, every coin operator for every position must be specified at the beginning.
Then, positions are chosen randomly, as for the case of dynamic broken links,
in order to select at each step the positions for the random coins. For each
s ∈ {−N, . . . , N}, pick a random number r ∈ [0, 1]. If r < p then s ∈ St,p,
otherwise do nothing. Then for each selected position, the following matrix

Ĉpk,t =

[
eıξ cos(θ) eıζ sin(θ)
eıζ sin(θ) −eıξ cos(θ)

]
ξ =

π

2
r1

θ =
π

2
r2

ζ =
π

2
r3

r1, r2, r3 ∈ U(0, 1).

is computed and used at that position for that step and at each step we get

Û2 = Ŝt

 ∑
i 6∈K,Kt,p

|i〉 〈i| ⊗ Ĉt +
∑

i∈K,i6∈Kt,p

|i〉 〈i| ⊗ Ĉi,t +
∑

i 6∈K,i∈Kt,p

|i〉 〈i| ⊗ Ĉpi,t


1.1.3 Measurements

Measure operator, in this context, is a projective measurement of the form
|i, c〉 〈i, c| for position i, coin state c.

For specific pairs of numbers M = {(i1, c1), . . . , (il, cl)}, the measure pro-
jector operator will take the form

MM =
∑

(i,c)∈M

|i, c〉 〈i, c| .

The general dynamic of the quantum walk can be summarized in the follow-
ing formula
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|ψ(n)〉 = ([I −MM]Û2)n |ψ〉 =
∑
i,c

αi,c(n) |i〉 |c〉 .

Note that |ψ(n)〉 must be renormalized after each step if M 6= ∅. The
respective density matrix is given by

ρ(n) = |ψ(n)〉 〈ψ(n)| .

1.2 qwsim 1D

Here we describe how to choose the dynamics for the quantum walk by intro-
ducing parameters in the parse file.

1.2.1 Inputs

N refers to the dimension of the line that goes from −N until N . It fixes the
dimension of the Hilbert space (overall state). The initial state is introduced in
the simulator by specify how much non-zero amplitudes αi,c there is, the respec-
tive positions i and coin state c. Then for each pair i, c the numbers Re(αi,c)
and Im(αi,c) need to be defined.

By fixing N the simulator fixes the shift operator to (3). Moreover, due to
memory management, circular boundary condition is selected by default, hence
we ad the circular boundary condition term (4), yielding

Ŝt = Ŝ1 + B̂1.

By choosing p1 we change the shift operator to

Ŝt = Ŝ1 + B̂1 + Ĝt,p1I0

If one fixes broken links, one defines specific positions as described above
and we get

Ŝt = Ŝ1 + B̂1 + Ĝt,p1I0
+ ĜI0 .

After selection of initial state and boundary conditions for the shift operator,
one can choose from a set of standard operators a coin operator Ĉ for all the
positions of the walker. The options for Ĉ are Hadamard, identity and the
overall unitary evolution is set to

Û1 = Ŝt ⊗ Ĉ = Ŝt

(∑
i

|i〉 〈i| ⊗ Ĉ

)
.
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p2 changes the coin operators accordingly, yielding

Û2 = Ŝt

 ∑
i 6∈Kt,p2

|i〉 〈i| ⊗ Ĉ +
∑

i∈Kt,p2

|i〉 〈i| ⊗ Ĉpi,t

 .

By fixing a static random coin one is defining the matrix Ĉt and we get

Û2 = Ŝt

 ∑
i 6∈Kt,p2

|i〉 〈i| ⊗ Ĉt +
∑

i∈Kt,p2

|i〉 〈i| ⊗ Ĉpi,t

 .

If, in addition, we define specific coins at specific positions we get

Û2 = Ŝt

 ∑
i6∈K,Kt,p

|i〉 〈i| ⊗ Ĉt +
∑

i∈K,i6∈Kt,p

|i〉 〈i| ⊗ Ĉi,t +
∑

i 6∈K,i∈Kt,p

|i〉 〈i| ⊗ Ĉpi,t

 .

Measure points can also be set in any position for any coin state. Parameter
dim absorb refers to the number of points one wishes to measure (absorb the
probability amplitude). By choosing dim absorb = l, l pairs of numbers M =
{(i1, c1), . . . , (il, cl)} will be specified and mathematically the projector operator
will take the form

MM =
∑

(i,c)∈M

|i, c〉 〈i, c| .

The general dynamic of the quantum walk can be summarized as

|ψ(n)〉 = ([I −MM]Û2)n |ψ〉 =
∑
i,c

αi,c(n) |i〉 |c〉

Note that |ψ(n)〉 must be renormalized after each step if M 6= ∅. The
respective density matrix is given by

ρ(n) = |ψ(n)〉 〈ψ(n)| .

1.2.2 Output Data

The output data is obtained from the following two density matrices:

Tr(ρ(n))P =
∑
c

(IP ⊗ 〈c|)ρ(n)(IP ⊗ |c〉)

=
∑
c

(∑
i1

αi1,c(n) |i, j〉

)(∑
i2

α∗i1,c(n) 〈i, j|

)
= ρP (n)
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and
Tr(ρ(n))P =

=
∑
i

(〈i| ⊗ IC)ρ(|i〉 ⊗ IC)

=
∑
i

(∑
c1

αi,c1 〈i|i〉 |c1〉

)(∑
c2

α∗i2,c2 〈i|i〉 〈c2|

)

=
∑
i

(∑
c1

αi,c1 |c1〉

)(∑
c2

α∗i,c2 〈c2|

)
= ρC .

The output files are:

• The file probability distribution at line b = i+N gives the value for

Pi(steps) =
∑
c

(
αi,cα

∗
i,c

)

• The average probability distribution where at line b = i + N gives the
value

Pav,i(n) =
1

steps

∑
c

(
αi,cα

∗
i,c

)
• mean x refers to the mean distance where at line n gives

〈i〉 (n) =
∑
i

i× Pi(n)

• standard deviation where at line n gives

σx(n) =

√∑
i

(〈i〉 − i× Pi(n))2

• Shannon entropy where at line n gives

pc(n) = 〈c| ρc(n) |c〉

H(C) = −
∑
c

pc(n) log(pc(n))
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• von Neumann entropy where at line n gives

S(ρc(n)) =
∑
s

λs ln(λs)

where λs are the eigenvalues of ρc(n).

2 Two particles Quantum Walk on the Line

2.1 Basic Dynamics

The state of two particles quantum walk, is written as

|ψ〉 =
∑

i,j,c1,c2

αi,,c1,j,c2 |i, c1〉 |j, c2〉 . (5)

where|i, c1〉 ∈ H1 and |j, c2〉 ∈ H2, with Hk = HP,k ⊗ HCk
. The overall

Hilbert space is described as H1 ⊗ H2. The dynamics of the walk for each
particle is described as the case of 1D quantum walk.

The same options for 1D quantum walk here can be described by Û = Û1⊗Û2

where

Û1 = Ŝ1
t

 ∑
i 6∈K1,K

t,p2,1

|i〉 〈i| ⊗ Ĉt +
∑

i∈K1,i6∈Kt,p

|i〉 〈i| ⊗ Ĉi,t +
∑

i 6∈K1,i∈Kt,p2,1

|i〉 〈i| ⊗ Ĉp2,1i,t


with

Ŝ1
t = Ŝ + B̂1 + Ĝ

t,p1,1
I10

+ ĜI10

and

Û2 = Ŝ2
t

 ∑
i 6∈K2,K

t,p2,2

|i〉 〈i| ⊗ Ĉt +
∑

i∈K2,i6∈Kt,p2,2

|i〉 〈i| ⊗ Ĉi,t +
∑

i 6∈K2,i∈Kt,p2,2

|i〉 〈i| ⊗ Ĉp2,2i,t


with

Ŝ2
t = Ŝ + B̂1 + Ĝ

t,p1,2
I20

+ ĜI20 .

This is the general case when the two particles are on different lines. When
they are in the same line, Û2 = Û1.
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2.1.1 Measurement

Measure points can also be set in any position for any coin state. Measure
operator, in this context, is a projective measurement of the form (|i〉 〈i| ⊗ I)⊗
(|j〉 〈j| ⊗ I) for position (i, j).

For l measuring points, M = {(i1, j1), . . . , (il, jl)}, the projector operator
will take the form

MM =
∑

(i,j)∈M

(|i〉 〈i| ⊗ I)⊗ (|j〉 〈j| ⊗ I).

The general dynamic of the quantum walk can be summarized as

|ψ(n)〉 = ([I −MM]Û2)n |ψ〉 =
∑
i,j,c

αi,j,c(n) |i, j〉 |c〉

Note that |ψ(n)〉 must be renormalized after each step if M 6= ∅. The
respective density matrix is given by

ρ(n) = |ψ(n)〉 〈ψ(n)| .

2.2 qwsim 1D 2 walkers

Here we describe how to choose the dynamics for the quantum walk by intro-
ducing parameters in the parse file. For brevity, and since the ”composition”
of operators is similar to the case of qwsim 1D, we omit the explicit operators
formula.

2.2.1 Inputs

N refers to the dimension of the line that goes from −N until N . Then one
selects if the particles are in the same line or not.

The choices for Û1 and Û2 is done in the same fashion as in qwsim 1D.
Measure points can also be set in any position for any coin state. Param-

eter dim absorb refers to the number of points one wishes to measure (absorb
the probability amplitude). Measure operator, in this context, is a projective
measurement of the form |i, c〉 〈i, c| for position i, coin state c.

More than one measure point can be defined and are fixed throughout the
walk. By choosing dim absorb = l, l pairs of numbersM = {(i1, j1), . . . , (il, jl)}
will be specified and mathematically the projector operator will take the form

MM =
∑

(i,j)∈M

|i, j〉 〈i, j| ⊗ I.

The general dynamic of the quantum walk can be summarized as
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|ψ(n)〉 = ([I −MM]Û2)n |ψ〉 =
∑
i,c

αi,c(n) |i〉 |c〉

Note that |ψ(n)〉 must be renormalized after each step if M 6= ∅. The
respective density matrix is given by

ρ(n) = |ψ(n)〉 〈ψ(n)| .

2.2.2 Output Data

The output data is obtained from the following two density matrices:

Tr(ρ(n))P =
∑
c

(IP ⊗ 〈c|)ρ(n)(IP ⊗ |c〉)

=
∑
c

∑
i1,j1

αi1,j1,c(n) |i1, j1〉

∑
i2,j2

α∗i1,j2,c(n) 〈i2, j2|

 = ρP (n)

and
Tr(ρ(n))P =

=
∑
i,j

(〈i, j| ⊗ IC)ρ(|i, j〉 ⊗ IC)

=
∑
i,j

(∑
c1

αi,j,c1 〈i, j|i, j〉 |c1〉

)(∑
c2

α∗i2,c2 〈i, j|i, j〉 〈c2|

)

=
∑
i,j

(∑
c1

αi,j,c1 |c1〉

)(∑
c2

α∗i,j,c2 〈c2|

)
= ρC .

The output files are:

• The file probability distribution at line l, according to l = (j+N)+(2N+
1)(i+N), is

Pi,j(steps) =
∑
c

(
αi,j,cα

∗
i,j,c

)

• The average probability distribution where at line l gives the value

Pav,i,j(n) =
1

steps

∑
c

(
αi,j,cα

∗
i,j,c

)
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• mean x refers to the mean distance where at line n gives

〈i〉 (n) =
∑
i

i×

∑
j

Pi,j(n)


• mean y refers to the mean distance where at line n gives

〈j〉 (n) =
∑
j

j ×

(∑
i

Pi,j(n)

)

• Covariance where at line n gives

Cov(x(n), y(n)) =

∑
i,j

Pi,j(n)× (i× j)

− 〈i〉 (n)× 〈j〉 (n)

• mean distance

〈i− j〉 =
∑
i,j

(i− j)Pi,j

• one shot probability to hot

P(1)
o (i0;n) = ‖P̂0 |ψ(n)〉 ‖2 = ‖〈i0|ψ(n)〉‖2

• Average hitting time

P(1)
f (i0;n) = ‖P̂0Û [P̂1Û ]n−1 |ψ(0)〉 ‖2

N (1)
a (i0) =

∞∑
n=1

nP(1)
f (i0;n)

• Concurrent hitting time

P(1)
c (i0;n) =

n∑
n′=1

‖P̂0Û [P̂1Û ]n
′−1 |ψ(0)〉 ‖2

• H(X)

pi =
∑
j

Pi,j

H(X) = −
∑
i

pi log(pi)
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• H(Y )

pj =
∑
i

Pi,j

H(Y ) = −
∑
j

pj log(pj)

• H(C)

pc = 〈c| ρc |c〉

H(C) = −
∑
c

pc log(pc)

• H(X,Y )

H(X,Y ) = −
∑
i,j

Pi,j log(Pi,j)

• I(X : Y )

I(X : Y ) = H(X) +H(Y )−H(X,Y )

• V on Newman entropy of coin state

S(ρP ) = S(ρc) = −
∑

rk log(rk)

• S x

S(ρx) = Tr[ρx ln ρx] = −Tr[Rx lnRx] =
∑
s

λs ln(λs)

• S y

S(ρy) = Tr[ρy ln ρy] = −Tr[Ry lnRy] =
∑
s

λs ln(λs)

• Iv xy

I(ρ̂P,12) = S(ρ̂P,1) + S(ρ̂P,2)− S(ρ̂P,12)

• Quantum Discord

δΠ̂X
i

= I(ρ̂P,12)− J(X : Y )

• E f is the upper bound for the entanglement of formation

EF (ρ̂P,12) =

4∑
k=1

rkE(|ϕk〉P,12)
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3 1 Particle on a 2D Lattice

3.1 Basic Dynamics

The state of the single particle quantum walk, on a 2D lattice, is written as

|ψ〉 =
∑
x,y,c

αx,y,c |x, y〉 |c〉 . (6)

The dynamics of the walk is described by the shift operator

Ŝxy =
∑
xy

|x+ 1, y〉 〈x, y| ⊗ |E〉 〈E|

+ |x, y − 1〉 〈x, y| ⊗ |S〉 〈S|
+ |x, y + 1〉 〈x, y| ⊗ |N〉 〈N |
+ |x− 1, y〉 〈x, y| ⊗ |W 〉 〈W |

and the coin operator, which is a 4 by 4 unitary matrix, denoted here as Ĉ.
The usual description of the unitary dynamics of quantum walk is given by

Û1 = Ŝxy ⊗ Ĉ = Ŝxy

∑
i,j

|i, j〉 〈i, j| ⊗ Ĉ

 .

3.2 Shift Operator and Topologies

The shift operator can also be altered if one defines the boundary condition to
be at positions −N and N (which is the case for every simulation):

Ŝxy =

N−1∑
x=−N

N∑
y=−N

|x+ 1, y〉 〈x, y| ⊗ |E〉 〈E|

+

N∑
x=−N

N∑
y=−N+1

|x, y − 1〉 〈x, y| ⊗ |S〉 〈S|

+

N−1∑
x=−N

N−1∑
y=−N

|x, y + 1〉 〈x, y| ⊗ |N〉 〈N |

+

N−1∑
x=−N+1

N∑
y=−N

|x− 1, y〉 〈x, y| ⊗ |W 〉 〈W | (7)

On the other hand, it is possible do define cylinder topology simply by
connecting the ends x = −N to x = N , yielding
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B̂x,1 =

N∑
y=−N

|−N, y〉 〈N, y| ⊗ |E〉 〈E|+
N∑

y=−N
|N, y〉 〈−N, y| ⊗ |W 〉 〈W | (8)

or by connecting the ends y = −N to y = N , giving

B̂y,1 =

N∑
x=−N

|x,N〉 〈x,−N | ⊗ |S〉 〈S|+
N∑

x=−N
|x,−N〉 〈x,N | ⊗ |N〉 〈N | . (9)

Another possible boundary condition is the Möbius strip when we connect
boundaries x = −N and x = N

B̂x,2 =
∑
y

|−N,−y〉 〈N, y| ⊗ |E〉 〈E|+
∑
y

|N,−y〉 〈−N, y| ⊗ |W 〉 〈W | (10)

or boundaries y = −N and y = N

B̂y,2 =
∑
x

|−x,−N〉 〈x,N | ⊗ |N〉 〈N |+
∑
x

|x,−N〉 〈−x,N | ⊗ |S〉 〈S| (11)

When both Möbis strip are in use, we get the Klein bottle.
Another constrain that can be imposed on the shift operator are broken

links. When there is a broken link from positions (x0, y0) to (x0 + 1, y0) we get

Ĝx,x0
= −(|x0 + 1, y0〉 〈x0, y0| ⊗ |E〉 〈E|+ |x0, y0〉 〈x0 + 1, y0| ⊗ |W 〉 〈W |)

+ |x0, y0〉 〈x0, y0| ⊗ |W 〉 〈E|+ |x0 + 1, y0〉 〈x0 + 1, y0| ⊗ |E〉 〈W |

whereas if the broken link is in positions (x0, y0) and (x0, y0 + 1), then

Ĝy,y0 = −(|x0, y0 + 1〉 〈x0, y0| ⊗ |N〉 〈N |+ |x0, y0〉 〈x0, y0 + 1| ⊗ |S〉 〈S|)
+ |x0, y0〉 〈x0, y0| ⊗ |S〉 〈N |+ |x0, y0 + 1〉 〈x0, y0 + 1| ⊗ |N〉 〈S| .

If we have broken links between nodes (i10, j
1
0), (i10 + 1, j1

0), . . . , (ik0 , j
k
0 ), (ik0 +

1, jk0 ), and define I0 = {(i10, j1
0), . . . , (ik0 , j

k
0 )} the resulting shift operator will be

Ĝx,I0 =
∑
x0∈I0

Ĝx0

whereas if we have broken links between nodes (i10, j
1
0), (i10, j

1
0 + 1), . . . ,

(ik0 , j
k
0 ), (ik0 , j

k
0 + 1), and define J0 = {(i10, j1

0), . . . , (ik0 , j
k
0 + 1)} we get

Ĝy,J0 =
∑
y0∈I0

Ĝx0

13



When broken links are fixed from the beginning and are unchanged during
the walk, we are dealing with static broken links. Here, I0 and J0 are fixed right
at the beginning and remains unchanged throughout the quantum walk.

Given a specific shift operator, If broken links appear at random positions,
then one is dealing with dynamic broken links. At each step, on top of the
shift operator, random broken links are chosen according to a fixed parameter
p which gives the probability of breaking any link. At each step, for each
(x, y, c) ∈ {−N, . . . , N − 1}2 × {E,N} a number r is picked at random from
[0, 1]. For each (x, y, E), if r ≤ p, then (x, y, E) ∈ It,p0 , otherwise (x, y, E) 6∈ It,p0 .
For each (x, y,N), if r ≤ p, then (x, y) ∈ J t,p0 , otherwise (x, y) 6∈ J t,p0 .

ĜIt,p0 ,Jt,p
0

= Ĝx,It,p0
+ Ĝy,Jt,p

0
.

3.2.1 Coin Operators

A generalization of this unitary evolution can be done by assigning to each
position (i, j) a coin operator Ĉi,j :

Û2 = Ŝ

∑
i,j

|i, j〉 〈i, j| ⊗ Ĉi,j


where the coin operators can be written more generally as

[
eıξ1 cos(θ1) eıζ1 sin(θ1)
eıζ1 sin(θ1) −eıξ1 cos(θ1)

]
⊗
[
eıξ2 cos(θ2) eıζ2 sin(θ2)
eıζ2 sin(θ2) −eıξ2 cos(θ2)

]
and ξ1, ζ1, θ1, ξ2, ζ2, θ2 ∈ [0, π/2].

static random coins occur when at fixed positions, at each step the coins are
randomly chosen. A random coin can be defined by ranges [ξ10, ξ11], [θ10, θ11],
[ζ10, ζ11], [ξ20, ξ21], [θ20, θ21] and [ζ20, ζ21] as

Ĉt =

[
eıξ1 cos(θ1) eıζ1 sin(θ1)
eıζ1 sin(θ1) −eıξ1 cos(θ1)

]
⊗
[
eıξ2 cos(θ2) eıζ2 sin(θ2)
eıζ2 sin(θ2) −eıξ2 cos(θ2)

]
ξ1 = ξ10 + (ξ11 − ξ10)× r1

θ1 = θ10 + (θ11 − θ10)× r2

ζ1 = ζ10 + (ζ11 − ζ10)× r3

ξ2 = ξ20 + (ξ21 − ξ20)× r4

θ2 = θ20 + (θ21 − θ20)× r5

ζ2 = ζ20 + (ζ21 − ζ20)× r6

ri ∈ U(0, 1).
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Additionally, one can define for specific position k a random coin as Ĉt which
we denote here as Ĉ(x,y),t and the set of such positions, K.

The general dynamic will be given by

Û2 = Ŝtx,y

 ∑
(x,y) 6∈K

|x, y〉 〈x, y| ⊗ Ĉt +
∑

(x,y)∈K

|x, y〉 〈x, y| ⊗ Ĉ(x,y),t


In the dynamic case random coins appears at random positions at each step.

Positions are chosen randomly, as for the case of dynamic broken links, in order
to select at each step the positions for the random coins. Then for each selected
position, the following matrix

Ĉ
(x,y)
t,p

[
eıξ1 cos(θ1) eıζ1 sin(θ1)
eıζ1 sin(θ1) −eıξ1 cos(θ1)

]
⊗
[
eıξ2 cos(θ2) eıζ2 sin(θ2)
eıζ2 sin(θ2) −eıξ2 cos(θ2)

]
ξ1 =

π

2
× r1

θ1 =
π

2
× r2

ζ1 =
π

2
× r3

ξ2 =
π

2
× r4

θ2 =
π

2
× r5

ζ2 =
π

2
× r6

ri ∈ U(0, 1).

is computed and used at position (x, y) for step t.

3.2.2 Measurement

Measure points can also be set in any position for any coin state. Measure
operator, in this context, is a projective measurement of the form |x, y〉 〈x, y|⊗I
for position (x, y).

For l measuring points, M = {(i1, j1), . . . , (il, jl)}, the projector operator
will take the form

MM =
∑

(i,j)∈M

|i, j〉 〈i, j| ⊗ I.

The general dynamic of the quantum walk can be summarized as

|ψ(n)〉 = ([I −MM]Û2)n |ψ〉 =
∑
i,j,c

αi,j,c(n) |i, j〉 |c〉

15



Note that |ψ(n)〉 must be renormalized after each step if M 6= ∅. The
respective density matrix is given by

ρ(n) = |ψ(n)〉 〈ψ(n)| .

3.3 qwsim 2D 1 walker

Here we describe how to choose the dynamics for the quantum walk by intro-
ducing parameters in the parse file. For brevity, and since the ”composition”
of operators is similar to the case of qwsim 1D, we omit the explicit operators
formula.

3.3.1 Inputs

N refers to the dimension of the line that goes from −N until N . In order to
define the initial state, one has to specify how much non-zero amplitudes αi,j,c
there is, the positions the respective positions (i, j) and coin state c. Then for
each tuple(i, j, c) the numbers Re(αi,j,c) and Im(αi,j,c) need to be defined.

By fixing N the simulator fixes the shift operator to (7). Moreover, due to
memory management, cylinder boundary condition is selected by default (for
x = ±N and y = ±N) , hence we get for shift operator

Ŝxy,t = Ŝxy,1 + B̂x,1 + B̂y,1.

By choosing p1 we define the sets It,p10 , It,p11 , J t,p10 and J t,p10 and change the
shift operator accordingly.

Ŝxy,t = Ŝxy,1 + B̂x,1 + B̂y,1 + Ĝ
I
t,p1
0 ,J

t,p1
0

.

If one fixes broken links, one defines specific positions as described above, I0
and J0

Ŝxy,t = Ŝxy,1 + B̂x,1 + B̂y,1 + Ĝ
I
t,p1
0 ,J

t,p1
0

+ ĜI0,J0 .

One can choose a set of standard coin operator Ĉ for all the positions of the
walker. The options for Ĉ are Hadamard, identity, Fourier and Grover Matrices
and the overall unitary evolution is set to

Û1 = Ŝxy,t ⊗ Ĉ = Ŝ3

∑
i,j

|i, j〉 〈i, j| ⊗ Ĉ

 .

16



p2 changes the coin operators accordingly, by defining the set Kt,p2 .

Û2 = Ŝxy,t

 ∑
i 6∈Kt,p2

|i〉 〈i| ⊗ Ĉ +
∑

i∈Kt,p2

|i〉 〈i| ⊗ Ĉpi,t

 .

By fixing a static random coin one is defining the matrix Ĉt.

Û2 = Ŝxy,t

 ∑
i6∈Kt,p2

|i〉 〈i| ⊗ Ĉt +
∑

i∈Kt,p2

|i〉 〈i| ⊗ Ĉpi,t

 .

If, in addition, we define specific coins at specific positions we fix the set K.

Û2 = Ŝxy,t

 ∑
(x,y) 6∈Kt,p2 ,K

|x, y〉 〈x, y| ⊗ Ĉt +
∑

(x,y)∈Kt,p2

|x, y〉 〈x, y| ⊗ Ĉp2ij,t +
∑

(i,j)∈K

|i〉 〈i| ⊗ Ĉij,t

 .

Measure points can also be set in any position for any coin state. Param-
eter dim absorb refers to the number of points one wishes to measure (absorb
the probability amplitude). Measure operator, in this context, is a projective
measurement of the form |i, c〉 〈i, c| for position i, coin state c.

More than one measure point can be defined and are fixed throughout the
walk. By choosing dim absorb = l, l pairs of numbersM = {(i1, j1), . . . , (il, jl)}
will be specified and mathematically the projector operator will take the form

MM =
∑

(i,j)∈M

|i, j〉 〈i, j| ⊗ I.

The general dynamic of the quantum walk can be summarized as

|ψ(n)〉 = ([I −MM]Û2)n |ψ〉 =
∑
i,c

αi,c(n) |i〉 |c〉

Note that |ψ(n)〉 must be renormalized after each step if M 6= ∅. The
respective density matrix is given by

ρ(n) = |ψ(n)〉 〈ψ(n)| .

3.3.2 Output Data

The output data is obtained from the following two density matrices:

17



Tr(ρ(n))P =
∑
c

(IP ⊗ 〈c|)ρ(n)(IP ⊗ |c〉)

=
∑
c

∑
i1,j1

αi1,j1,c(n) |i1, j1〉

∑
i2,j2

α∗i1,j2,c(n) 〈i2, j2|

 = ρP (n)

and
Tr(ρ(n))P =

=
∑
i,j

(〈i, j| ⊗ IC)ρ(|i, j〉 ⊗ IC)

=
∑
i,j

(∑
c1

αi,j,c1 〈i, j|i, j〉 |c1〉

)(∑
c2

α∗i2,c2 〈i, j|i, j〉 〈c2|

)

=
∑
i,j

(∑
c1

αi,j,c1 |c1〉

)(∑
c2

α∗i,j,c2 〈c2|

)
= ρC .

The output files are:

• The file probability distribution at line l, according to l = (j+N)+(2N+
1)(i+N), is

Pi,j(steps) =
∑
c

(
αi,j,cα

∗
i,j,c

)

• The average probability distribution where at line l gives the value

Pav,i,j(n) =
1

steps

∑
c

(
αi,j,cα

∗
i,j,c

)
• mean x refers to the mean distance where at line n gives

〈i〉 (n) =
∑
i

i×

∑
j

Pi,j(n)


• mean y refers to the mean distance where at line n gives

〈j〉 (n) =
∑
j

j ×

(∑
i

Pi,j(n)

)
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• Covariance where at line n gives

Cov(x(n), y(n)) =

∑
i,j

Pi,j(n)× (i× j)

− 〈i〉 (n)× 〈j〉 (n)

• mean distance

〈i− j〉 =
∑
i,j

(i− j)Pi,j

• one shot probability to hot

P(1)
o (i0;n) = ‖P̂0 |ψ(n)〉 ‖2 = ‖〈i0|ψ(n)〉‖2

• Average hitting time

P(1)
f (i0;n) = ‖P̂0Û [P̂1Û ]n−1 |ψ(0)〉 ‖2

N (1)
a (i0) =

∞∑
n=1

nP(1)
f (i0;n)

• Concurrent hitting time

P(1)
c (i0;n) =

n∑
n′=1

‖P̂0Û [P̂1Û ]n
′−1 |ψ(0)〉 ‖2

• H(X)

pi =
∑
j

Pi,j

H(X) = −
∑
i

pi log(pi)

• H(Y )

pj =
∑
i

Pi,j

H(Y ) = −
∑
j

pj log(pj)

• H(C)

pc = 〈c| ρc |c〉

H(C) = −
∑
c

pc log(pc)
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• H(X,Y )

H(X,Y ) = −
∑
i,j

Pi,j log(Pi,j)

• I(X : Y )

I(X : Y ) = H(X) +H(Y )−H(X,Y )

• V on Newman entropy of coin state

S(ρP ) = S(ρc) = −
∑

rk log(rk)

• S x

S(ρx) = Tr[ρx ln ρx] = −Tr[Rx lnRx] =
∑
s

λs ln(λs)

• S y

S(ρy) = Tr[ρy ln ρy] = −Tr[Ry lnRy] =
∑
s

λs ln(λs)

• Iv xy

I(ρ̂P,12) = S(ρ̂P,1) + S(ρ̂P,2)− S(ρ̂P,12)

• Quantum Discord

δΠ̂X
i

= I(ρ̂P,12)− J(X : Y )

• E f is the upper bound for the entanglement of formation

EF (ρ̂P,12) =

4∑
k=1

rkE(|ϕk〉P,12)
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